성균관대학교

성균관대학교

SKKU News

A Memory Device Inspired by the Neuron Connections of the Human Brain 2016.10.10
  • 김민선
  • Views : 5504
게시글 내용

In collaboration with Sungkyunkwan University, researchers from the Center for Integrated Nanostructure Physics within the Institute for Basic Science (IBS), have devised a new memory device inspired by the neuron connections of the human brain. The research, published in Nature Communications, highlights the devise’s highly reliable performance, long retention time and endurance. Moreover, its stretchability and flexibility makes it a promising tool for the next-generation soft electronics attached to clothes or the body.

 

The brain is able to learn and memorize thanks to a huge number of connections between neurons. The information you memorize is transmitted through synapses from one neuron to the next as an electro-chemical signal. Inspired by these connections, IBS scientists constructed a memory called two-terminal tunnelling random access memory (TRAM), where two electrodes referred to as drain and source, resemble the two communicating neurons of the synapse. While mainstream mobile electronics like digital cameras and mobile phones use the so-called three-terminal flash memory, the advantage of two-terminal memories like TRAM is that two-terminal memories do not need a thick and rigid oxide layer. “Flash memory is still more reliable and has better performance, but TRAM is more flexible and can be scalable,” explains Professor Yu.

 

TRAM is made up of a stack of one-atom-thick, or a few atom-thick 2D crystal layers: one layer of the semiconductor molybdenum disulfide (MoS2) with two electrodes (drain and source), an insulating layer of hexagonal boron nitride (h-BN) and a graphene layer. In simple terms, memory is created (logical-0), read and erased (logical-1) by the flowing of charges through these layers. TRAM stores data by keeping electrons on its graphene layer. By applying different voltages between the electrodes, electrons flow from the drain to the graphene layer tunnelling through the insulating h-BN layer. The graphene layer becomes negatively charged and memory is written and stored and vice versa. When positive charges are introduced in the graphene layer, memory is erased.

Previous The President of SKKU Visited Two Prestigious Universities in Australia
Next 10th Anniversary Academic Forum of Graduate School of Management of Technology
  • Content Manager